
2016.1E54

E arlier, knowledge of ma-
chine code was an almost 
required skill for game 
and demo programmers, 
for example, but nowa-

days it is mostly generated by high-lev-
el compilers. Being able to read ma-
chine code is still useful, nevertheless. 
You can evaluate the work of the com-
piler and examine and modify pro-
grams without their source code. Pos-
sessing this skill makes the computer 
and its software much more tangible. 
Machine code is still an important tool 
for people working with vintage hard-
ware, microcontrollers and low-level 
security vulnerabilities.

Machines speak 
many languages
Not all machines can understand the 
same machine code. PC processors, 

for example, use x86 machine code 
and mobile devices use ARM machine 
code. A single machine code is also 
referred to as an instruction set or ar-
chitecture.

For the sake of clarity, this article 
focuses on four instruction sets from 
the annals of computing history: 6502, 
x86, 68K and ARM. Since the design 
philosophies behind these instruction 
sets are also quite different, they will 
also provide an overall picture of the 
types of machine code that exist.

MOS Technology’s 6502 is one of 
the most popular 8-bit processors. The 
8-bit computers from Apple, Atari and 
Commodore and the Nintendo NES, 
for example, all use it or one of its 
clones. The 6502’s traditional competi-
tor was the Zilog Z80, based on the In-
tel 8080. AVR and PIC are newer 8-bit 
instruction sets that are mostly used in 
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Machine code:
The gateway to the computer’s soul
Computer hobbyists have always considered machine code to be something extraordinary – 
after all, it is the closest a programmer can get to the actual hardware. Although machine code 
is no longer the gateway to programming magic, understanding it will help in comprehending 
technology.
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Instructions from different machine code dia-
lects, broken down to bits.
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embedded systems.
The Intel x86 was made famous by 

the IBM PC compatibles. The original 
instruction set was 16-bit, but it has 
later been radically expanded and re-
newed – first to 32-bit for the 386 pro-
cessor, then to 64-bit at the initiative of 
AMD. Despite the enhancements, the 
different historical sediments are still 
clearly visible in x86 machine code.

The Motorola MC68000 was used 
by most computers that competed 
with the IBM PC until the early 1990s: 
the Amiga, Atari ST and Macintosh as 
well as most UNIX workstations. It is 
based on the instruction sets of larger 
1970s computers and is a pure CISC 
(Complex Instruction Set Computer) 
by design.

ARM is currently the most popular 
instruction set. It dominates the mo-
bile platforms, in particular, but may 
even replace the x86. The instruction 
set was originally used on the Archi-
medes home computer, and it became 
popular since it offered a lot of power 
with a low amount of silicon. ARM is a 
RISC (Reduced Instruction Set Com-
puter). Other RISCs include MIPS, 
SPARC, PowerPC and AVR, for exam-
ple.

Following instructions
Machine code instructions are fairly 
dense strings of ones and zeros. The 
instruction presented on page 54 per-
forms the same task in several different 
machine code variants. Each instruc-
tion adds the number 3 to one of the 
processor’s internal registers, but the 
bit width varies, among other things: 
the 6502’s adc uses 8-bit numbers, 

which means that the largest sum can 
amount to a few hundred, while the 
ARM can count into the billions with 
its 32-bit wide calculations. The num-
ber of bits in a processor or instruction 
set usually refers to the maximum bit 
width of basic calculations.

Strings of ones and zeros are diffi-
cult to read for humans. This is why 
people usually process machine code 
in symbolic form, known as assembly 
language. The assembly representation 
can also be used to guess what the in-
struction does even if the instruction 
set is not known; for example, ad(d) 
refers to addition. The same machine 
code may have several different as-
sembly language syntaxes that are used 
by different assembly compilers or as-
semblers – such as the Intel and AT&T 
syntaxes for the x86.

A machine code instruction usu-
ally consists of an opcode (operation 
code), the addressing mode and the 
operands. The opcode is the ”verb” 
and it corresponds to the first word 
in an assembly statement, also known 
as a mnemonic; add, for example. The 
operands are the ”nouns” that follow 
it: registers, numbers and memory 
addresses. Addressing modes can be 

compared to the forms of declension in 
human languages. They indicate how 
the operand part should be interpret-
ed – whether it is a memory address 
or a number – and provide additional 
attributes; for example, the suffix .b, 
.w or .l on a 68K instruction indicates 
whether the operation is performed in 
8, 16 or 32 bits.

Registers rotate data
In most machine code dialects, the ma-
jor part of the data processing occurs 
inside registers. They can be viewed as 
processor-internal fixed variables. The 
number of registers, their width and 
their manner of use differ substantially 
from one instruction set to another.

The 6502 has a very small register 
set and each register is tied to specific 
tasks. Most calculations will need to be 
performed in the accumulator regis-
ter, A. The index registers X and Y are 
mostly suited for memory addressing 
and loop counting, which A cannot 
perform. In addition to these, the 6502 
only has the stack pointer S, the status 
register P and the instruction pointer 
PC that indicates the memory address 
for the next instruction. PC is the only 
16-bit register; the others are 8-bit. The 
limited register space is supplemented 
by the ”zero page”, the first 256 bytes of 
the memory, and many types of mem-
ory addressing can only be performed 
via the zero page.

The ARM and other RISCs, for their 
part, have a highly symmetrical and 
general-purpose register set. Theo-
retically, any register can be used for 
any purpose. The only exceptions are 
register R15, which is the instruction 

The oldest parts of the register set for the current 64-bit x86 originate from the 1970s.
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pointer, and a separate status register. 
The basic ARM has 16 32-bit registers, 
but most other RISCs have 32 or more 
basic registers.

The registers on the x86 were origi-
nally specialised; for example, only the 
registers BX, SI, DI and BP could be 
used for memory addressing. The 32-
bit update removed some of these re-
strictions. Nevertheless, even the cur-
rent 64-bit operation mode has some 
instructions that are bound to specific 
registers: for example, the single-byte 
command stosb saves the contents of 
the 8-bit AL (accumulator low) regis-
ter to the memory location where the 
original DI (destination index) regis-
ter’s 64-bit extension RDI is pointing 
at.

The basic register set of the 68k is di-
vided into eight data and address reg-
isters D0–D7 and A0–A7, of which A7 
is used as a stack pointer. It also has a 
separate status register, CCR, and the 
instruction pointer, PC. The address 
registers were originally 24-bit, but 

they were expanded to 32 bits in the 
68020. All registers can be used for 
calculations in a fairly general manner, 
but memory addressing must use the 
address registers.

Addressing modes modify 
the instructions
The simplest machine code instruc-
tions have no operands; this means 
that their operation is tied to specific 
registers. The instruction stosb on the 
x86 mentioned above is an example of 
this implicit form of addressing. Other 
examples include instructions for re-
turning from a subroutine (ret, rts) 
and the instructions for setting and 
clearing flags (sec, clc).

The typical number of operands in 
an instruction varies from one ma-
chine code to another. On the 6502, 
most instructions have one operand. 
This operand is usually a memory ad-
dress, in which case the calculation oc-
curs between the accumulator register 
and the memory location. The x86 and 
68k have two operands: a source and 

AND BIC

OR XOR
(EOR)

NOT

Bit operations from the instruction sets dis-
cussed in this article. BIC is used by ARM.

SHL, (SAL, ASL, LSL)

ROL

Operation of the bit shift instructions. Many 
instruction sets have different names for ROR 
and ROL that use the carry digit, such as RCR 
and RCL.

Intel X86 68k AT&T X86

Operand order add destination,source add.w source,destination addw source,destination

Memory addressing add ax,[1234] add.w 1234,destination addw 1234,%ax

Immediate add ax,1234 add.w #1234,destination addw $1234,%ax

Indexed address [ebx+esi+8] 8(a0,d1.L) 8(%ebx,%esi)

Hexadecimal 1234h $1234 0x1234

Location of the instruction jmp $ jmp pc jmp .

Data byte db 123 ds.b 123 .byte 123

Assembly syntaxes are usually quite similar, but they may have some confusing differences. 
Here are a few examples.

ROR

SHR (LSR)

SAR, ASR
8× 4× 2× 1× Unsigned Signed

0 0 0 0 0 +0

0 0 0 1 1 +1

0 0 1 0 2 +2

0 0 1 1 3 +3

0 1 0 0 4 +4

0 1 0 1 5 +5

0 1 1 0 6 +6

0 1 1 1 7 +7

1 0 0 0 8 -8

1 0 0 1 9 -7

1 0 1 0 10 -6

1 0 1 1 11 -5

1 1 0 0 12 -4

1 1 0 1 13 -3

1 1 1 0 14 -2

1 1 1 1 15 -1

Four-bit integers interpreted as unsigned and 
signed, using two's complement.

clc
lda $FE
adc #$34
sta $FE
lda $FF
adc #$12
sta $FF

asl $FE
rol $FF
asl $FE
rol $FF
asl $FE
rol $FF

Handling 16-bit numbers with the 8-bit 6502. 
The example on the left adds the hexadeci-
mal number $1234 to the value of the num-
ber saved at memory locations $FE and $FF, 
the one on the right multiplies it by eight by 
shifting the bits.

lp: cmp r0,r1
    subgt r0,r0,r1
    suble r1,r1,r0
    bne lp

A loop that calculates the largest common 
denominator on an ARM by using conditional 
execution. An Euclidean algorithm subtracts 
the smaller number from the larger one until 
the numbers are equal.
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destination operand for each instruc-
tion. A typical ARM instruction has 
three operands: two sources and one 
destination. Forth-style stack-based 
machine codes can be considered ze-
ro-operand variants.

For most processors, the main part 
of machine consists of operations be-
tween registers. However, immediates 
or different memory references can 
also be used as operands in addition to 
registers.

There are often limits to combin-
ing operands: on the x86, one of the 
operands must always be a register 
or an immediate; there is no direct 
command for ”add value of memory 
location 2 to value of memory loca-
tion 1”. However, memory references 
can be very complex in accordance 
with the CISC philosophy. For ex-
ample, the 32-bit x86 instruction mov  
eax,[ebx+ecx*4+1256] forms a 
memory address by adding together 
a constant and two registers, of which 
ECX has its bits shifted two steps to the 
left.

In ARM-type RISCs, most instruc-
tions can only receive registers or 
immediates as their operands. Mem-
ory handling must be arranged by 
means of dedicated load and store  

The internals of a 6502 processor. The lower half is dominated by an 
8-band arithmetic and register unit, the top part has a microcode table 
that converts the instructions into execution steps. Between them you 
will find the rest of the operational logic, such as branch and flag 
handling.

The internals of an AMD Phenom X4 processor. Most of the surface 
area of the four symmetrically positioned 64-bit cores is taken up by 
cache memory and instruction decoding and sequence logic.

The internals of a Motorola 68000. Can you find the arithmetic and register unit?

lp:  movem (a0)+,(d1-d7)
     movem (d1-d7),-(a1)
     dbne d0,lp

lp:  subcc r2,r2,#1
     ldmia r0,(r3-r13)
     stmdb r1,(r3-r13)
     bne lp

A loop that copies the contents of a memory area in reverse order to another memory area by 
using the register set instructions. 68k on the left, ARM on the right.
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instructions (ld, st, mov) that do 
not perform calculations.

Memory handling on the ARM and 
68k is improved by addressing types 
where the contents of the register are 
incremented or decremented while 
the register is used for memory ad-
dressing. This is handy when scanning 
memory areas.

Instead of using direct addresses, it 
is often preferable to refer to memory 
locations by using the location of the 
instruction as a fixed point. The con-
ditional jump instructions on the 6502 
and x86 can be used to jump forward 
or backward by a maximum of 128 
bytes; this means that the instruction 
only takes up two bytes. Program code 
that does not use direct memory ad-
dresses is called position-independent, 
since it can be executed as is from any 
location in memory.

Computers like to compute
Most processors use binary integers 
by default. The 6502, 68k and x86 also 
offer Binary Coded Decimals (BCD) 
where four bits correspond to each of 
the decimals 0–9. Floating point num-
bers, for their part, are processed with 
separate floating point units that have 
their own registers and instructions.

Negative integers are nearly always 
expressed as two’s complements, where 
the sign is changed by flipping the bits 
around and adding one to the result. 
Therefore, a number that contains only 
ones has a value of -1, like a tape coun-
ter that goes from 000 to 999 when re-
wound. The same bit string can be in-
terpreted as either signed or unsigned, 
and the differences become especially 
apparent during multiplication, divi-
sion and comparison.

All machine codes offer addition 
and subtraction for integers (add, 
sub). The 8-bit machines usually lack 
multiplication and division (mul, div), 
which means that they must be im-
plemented by means of subroutines 
or tables. RISCs usually only contain 
multiplication.

Bit operations include both logical 
bit operations (and, or, eor/xor) and 
bit shifts that come in many forms. The 
functionality of the bit operations is 
presented in the enclosed diagrams. 
The difference between an ”arithme-
tic” and ”logical” bit shifts is that in 
an arithmetic shift, the number is as-

sumed to be signed and its top bit is 
kept in place.

One of the peculiarities of ARM is 
that, while it has no instructions for 
bit shifts, a bit shift can be combined 
with the second source operand of any 
arithmetic operation. For example, 
add r0,r1,r2 asr r3 corresponds 
to the C expression r0=r1+(r2>>r3).

Sometimes, the result of the opera-
tion will not fit in the destination reg-
ister. For example, the sum of two 8-bit 
numbers has 9 bits. The topmost bit is 
usually recorded in the carry flag (C). 
The carry digit is used for chaining the 
calculations: the instructions adc/addx 
and sbc/sbb/subx are additions and 
substractions that consider the carry 
digit from the previous calculation.

What ifs
A conditional jump is the typical ma-
chine code equivalent to the if clause 
in higher-level languages. For example, 
the instruction beq, je or jz will jump 
to the memory address provided as the 
operand if the result of the previous 
arithmetic operation was zero. Before 
the jump, it is common to use a com-

parison instruction, cmp/cp, which 
performs the subtraction without sav-
ing the result. The jump instructions 
are usually named from the point of 
view of comparison; if the result of the 
subtraction is zero, the numbers are 
equal (e/eq).

The information concerning the re-
sult is usually saved in status register 
bits that are known as flags. The carry 
flag mentioned above is one of them. 
Conditional jump instructions exam-
ine the status of the flags and jump if a 
condition is met. Typical flags include:
•  The zero flag (Z) that indicates 

whether the result of a calculation 
is zero.

•  The sign flag (S) or negative flag 
(N) that corresponds to the top bit 
of a result that fits in a register. For 
negative numbers, this is 1.

•  The carry flag (C) that corresponds 
to the bit carried over from an arith-
metic operation.

•  The overflow flag (O or V) is set 
when the extension of the result 
does not fit in the carry flag.

On the 6502, x86 and 68k, each cal-
culation instruction affects the flags. 

EX, EXG, XCHG exchange Exchange the contents of the registers.

LD load Load from memory.

MOV, MOVE move Copy data from register or memory to register or memory.

POP, PL pop, pull Pick the topmost value in the stack.

PUSH, PH push Add to the top of the stack.

ST store Store in memory

ADC, ADDX add with carry/extend Add with carry digit.

ADD add Add.

DEC decrement Decrement by one.

DIV divide Divide.

INC increment Increment by one.

MUL multiply Multiply.

NEG negate Switch the sign.

SBB, SBC, SUBX subtract with borrow/carry/extend Subtract with carry digit.

SUB subtract Subtract.

AND and AND operation by bit.

ASL, SAL arithmetic shift left Shift bits to the left.

ASR, LSR, SHR [arithmetic/logical] shift right Shift bits to the right, extending the topmost bit.

EOR, XOR exclusive or Exclusive OR by bit.

LSL, SHL [logical] shift left Shift bits to the right, extending with zero.

NOT not Reverse the bits.

OR or OR operation by bit.

ROL, RL, RCL rotate [with carry] left Rotate bits counterclockwise [through the C flag].

ROR, RR, RCR rotate [with carry] right Rotate bits clockwise [through the C flag].

Data transfer.

Basic arithmetic operations.

Bit operations.
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On the ARM, the effect on flags is ex-
pressed for each instruction with the 
suffix cc (condition code). ARM does 
not always require conditional jumps, 
since the execution of any instruction 
can be made conditional. For example, 
the instruction addeq operates like 
add, but it is only executed if the zero 
flag is set.

Stacking up other stuff
A normal unconditional jump instruc-
tion may be called jmp, bra or b, while 
a subroutine jump is called jsr, bsr, 
call or bl. Subroutine calls store the 
value of the instruction pointer. This 
allows the execution to resume from 
the place where the subroutine was 
called. The return instruction is typi-
cally called ret or rts.

Older instruction sets typically save 
the return address in a memory area 
known as the stack. Instead, RISCs use 
a register that the subroutine stacks by 
itself if it aims to call other subroutines. 

The linking jump instruction for ARM 
is called bl (branch and link). The link 
register is usually R14 and the instruc-
tion pointer is R15, so the instruction 
for returning from the subroutine is 
mov r15,r14. 

The stack stores other things in ad-
dition to return addresses. Since the 
subroutines use the same registers as 
the main program, the values of the 
register values will commonly need to 
be stored in the stack. Stack space can 
also be reserved for local variables that 
do not fit inside the registers. The x86 
and 6502 have push and pop/pull in-
structions that are bound to the stack 
pointer, whereas the ARM and 68k use 
regular memory handling instructions 
for stack handling. The ARM and 68k 
also have instructions for saving or 
loading a desired register set at once.

Calling conventions are used to keep 
larger programs in check. They define 
how parameters and return values are 
relayed between the main program 

and subroutine, and which registers 
the subroutine is allowed to modify.

The world is memory
From the processor’s point of view, the 
entire outside world consists of mem-
ory. Memory is usually divided into 
memory cells that are the size of an 
8-bit byte and have their own numeric 
address.

There are two main methods for 
storing numbers that consist of sev-
eral bytes. The 68k uses big-endian 
byte order, which means that the most 
significant bits are stored in the first 
byte. The 6502 and x86 use little-endi-
an byte order and store the lower bits 
first. ARM can operate with either byte 
order; little-endian is more common, 
however.

In simpler devices, the physical 
RAM, ROM and control chips have 
fixed areas within the memory space. 
In a VIC-20 program, for example, 
writing to address $900F will always 
affect the colour register of the video 
chip. More complex hardware allows 
for changing the memory structure 
visible to the program.

If the machine has more memory 
than the address space can hold, such 
as over 64 kilobytes in a 6502 based 
machine, banking is required. Banking 
means selecting which parts of the to-
tal memory are visible in specific areas 
of the memory space. Modern operat-
ing systems modify the visible struc-
ture of the memory in order to prevent 
different processes from accessing 
unauthorised memory areas. At the 
same time, the code is prevented from 
modifying the state of the processor by 
switching from supervisor mode to user 
mode during its execution.

Virtual memory means all memory 
visible to the program needs to cor-
respond to physical memory. If the 
address space is large enough, the pro-
gram may request the operating system 
to extend the virtual memory to the 
entire contents of the hard drive, for 
example. When the program tries to 
access a memory location that is not in 
physical memory, this causes an excep-
tion that the operating system handles 
by loading the desired location from 
the hard drive into physical memory. 
From the point of view of the program, 
the entire contents of the drive are per-
manently accessible in memory.

BIT, BT, BTST, TEST bit test Test individual bits (AND without saving the result).

CLf clear flag Clear a flag (e.g. C).

CMP, CP compare Compare (subtract without saving the result).

Scc, SETcc set on condition Set the value of the register to the truth value (e.g. NE).

SEf, STf set flag Set a flag (e.g. C).

Bcc, Jcc branch/jump on condition Jump if the condition (e.g. NE) is met.

BL, BAL branch and link Branch to subroutine, place return address in the link register.

DBcc, LOOP decrement and branch, loop Decrement the value of the register and branch if the condi-
tion is met.

JMP, JP, B, BRA jump/branch Branch to memory address.

JSR, JR, BSR jump/branch to subroutine Branch to subroutine, place return address in the stack.

RET, RTS return from subroutine Return from the subroutine to the main routine.

SWI, INT, TRAP, 
BRK, SYSCALL

software interrupt, trap, 
break, system call

Perform a software interrupt.

HLT halt Halt the processor (wait for interrupt).

NOP no operation Do nothing.

CC, NC no/clear carry Carry digit = 0

CS, C carry set Carry digit = 1

EQ, E, Z equal/zero Numbers equal (zero flag set)

GT, G greater [than] First value > second value

LT, L less [than] First value < second value

NE, NZ not equal/zero Numbers not equal (zero flag cleared)

NS, PL no sign, plus Result not negative (sign = 0)

S, MI sign, minus Result negative (sign = 1)

VC, NO no/clear overlow Overflow flag cleared.

VS, O overflow set Overflow flag set.

Comparison and flags.

Jump instructions.

Other instructions.

Conditions (as part of instructions).
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Memory speed is not a bottleneck for 
1970s processors. On the 6502, for ex-
ample, memory-resident tables and un-
rolled loops should be used in code that 
is critical in terms of speed, if you can 
fit them in memory. For modern pro-
cessors, however, a calculation needs 
to be really complex in order to bene-
fit from a pre-calculated table. Internal 
caches and smart pipelines mean that 
unrolling loops is more likely to slow 
down the code than make it faster.

Controlling devices
Computer equipment includes auxil-
iary chips that have their own control 
registers. On the 6502, 68k and ARM, 
these registers are visible in the mem-
ory space. However, the x86 uses sepa-
rate I/O ports that are handled with the 
in and out instructions.

Interruptions were designed to re-
lieve the processor from the burden 
of continuously polling the states of 
the different devices. A device can 
send out an interrupt request (IRQ) 
that causes the processor to stop what 
it is doing and move to the interrupt 
handling routine. In order to manage 
routine tasks, most operating systems 
execute a timer interrupt a few dozen 
times per second.

In its simplest form, an interrupt 
is no different than a subroutine call. 
The start address for the subroutine is 
fetched from a branch table according 
to the interrupt type and number. In 

modern operating systems, the inter-
rupt also switches the processor into 
supervisor mode. Only an operating 
system that is running in supervisor 
mode can access external hardware, 
and applications perform a non-mask-
able interrupt (NMI) when they require 
assistance from the operating system.

Several instructions at once
The commonly used instruction sets 
go back several decades, but processor 
operation has changed significantly 
during this time. Parallelism has been 
increased, in particular.

Traditional CISC processors run 
only one instruction at a time. The 
execution of an instruction is divided 
into several consecutive stages that are 
coded in the processor’s internal mi-
crocode table. On the 6502, executing 
an instruction consists of 2–8 stages, 
whereas division on the 8086 takes up 
over 100 clock cycles. On these proces-
sors, a programmer can calculate the 
execution time for their code simply 
by adding together the clock cycles re-
quired for the instructions and divid-
ing the result by the clock frequency.

One of the key ideas of RISC archi-
tectures is that the execution of simple 
instructions may occur in parallel. The 
original ARM processor on the Archi-
medes has a three-stage pipeline: the 
processor saves the result from one 
arithmetic operation into a register 
while performing the next operation 

and reading the following instruction 
from memory.

Pipeline technology means that 
jumps are relatively costly. Executing a 
jump means discarding the execution 
stages of the instructions that follow 
it. There are several ways to prevent 
this issue. Conditional execution, used 
by ARM, is one of them: omitting one 
or two instructions is less costly than 
purging the entire pipeline. Branch pre-
diction is a more advanced technique; 
the processor tries to guess whether the 
jump will occur and loads instructions 
into the pipeline accordingly. Specula-
tive execution, on the other hand, ex-
ecutes both options and discards the 
effects of the one that did not occur.

Many processors have several paral-
lel pipelines, allowing them to execute 
consecutive instructions in real time. 
However, consecutive instructions 
commonly depend on each other’s 
results; this means that the program-
mer or processor should arrange the 
instructions in a manner where con-
secutive instructions do not use the 
same registers. In processor automa-
tion, these techniques are referred to 
as out-of-order execution and register 
renaming.

The x86 architecture has offered its 
fair share of challenges for processor 
designers. Since the 1990s, complex 
x86 instructions have been broken 
down into RISC style microinstruc-
tions that utilise the above techniques.

A 6502 example for the Commodore 64. The PRG file generated by the 
ACME cross-assembler can be started directly in the VICE emulator, 
for example.

A 16-bit x86 example for MS-DOS. NASM will compile the code and 
create an executable COM file.

        !to "skrolli.prg",cbm
        *=$0801     ; Start address of the program.

; Obligatory BASIC portion: 10 SYS2061 + final zeroes:
!byte $0b,$08,$0a,$00,$9e,$32,$30,$36,$31,0,0,0

        ldx #0      ; Set counter (X) to zero.

loop0   txa         ; Copy X to A in order to
        and #15     ; calculate X AND 15.
        tay         ; Result to Y; then fetch
        lda msg,y   ; a byte from address msg+Y.

        sta $0400,x ; Copy it to the each
        sta $0500,x ; 256-byte block of the
        sta $0600,x ; screen memory at the
        sta $0700,x ; offset X.

        inx         ; Increment X.
        bne loop0   ; Repeat until rolls back to zero. 

        rts         ; Return to BASIC interpreter.

msg     !scr "read skrolli!!! "

        bits 16         ; Nasm to 16-bit mode.
        org 0x100       ; COM programs start at 0x100.

        mov ax,0xb800   ; Start address of screen memory
        mov es,ax       ; .. to the segment register ES.
        xor di,di       ; Set Destination Index to zero.

        mov ah,14       ; High byte of AX is the color.

loop1   mov si,msg      ; Source Index to start of text.
        mov cx,16       ; Set loop counter to 16.

loop0   lodsb           ; AL <- [DS*16+SI], SI incs.
        stosw           ; AH*256+AL -> [ES*16+DI], DI +2.
        loop loop0      ; CX decs, repeat until 0.

        cmp di,80*25*2  ; Gone through the whole screen?
        jne loop1       ; If not, continue the loop.

        ret             ; Return to the command shell.

msg     db "Read Skrolli!!! "
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Special instructions for 
special assignments
Although the basic instruction sets can 
more or less do everything, they often 
have special extensions that speed up 
the performance of specific tasks.

Floating point arithmetic has been a 
traditional requirement for scientific 
calculation. The idea is that numbers 
are presented using the mantissa and 
exponent, which offers a substantially 
larger value range than integers. PC 
processors started receiving integrat-
ed floating point units in the age of 
the 80486, but not all game consoles 
and mobile devices had floating point 
hardware even in the 2000s.

Digital signal processors (DSPs) 
were used to speed up the processing 
of image and sound data. Even basic 
processors started receiving DSP-type 
SIMD (single instruction, multiple 
data) instructions in the 1990s. Exam-
ples of SIMD extensions include MMX 

and SSE for the x86 and NEON for the 
ARM.

True to their name, SIMD instruc-
tions use several different data elements 
in parallel. For example, the MMX in-
struction paddb mm0,mm1 interprets 
the values of the 64-bit multimedia 
registers MM0 and MM1 as rows of 
separate 8-bit bytes when adding them 
together. There are also instructions for 
rearranging data elements, for example.

The registers in the SSE and NEON 
are 128-bit, and the elements can also 
be floating point numbers. SSE also 
supports complex floating point oper-
ations such as square roots, and it has 
replaced the old x87 instructions on 
modern x86s.

In the mobile world, in particular, 
the same chip may contain an enor-
mous amount of specialised arithme-
tic logic. For example, the Qualcomm 
Snapdragon 810 contains eight 64-bit 
ARM processor cores, each of which 

has three discrete pipelines and the 
NEON and floating point extensions. 
The chip also has a 288-core graphics 
processing unit, a 32-bit DSP and con-
trol chips that are specific to different 
radio protocols. Your pocket may be 
performing more simultaneous calcu-
lations than an old-age supercomputer.

Hack away!
The most natural, and often the most 
rewarding, machine code projects can 
be found in the field of simple infor-
mation technology, such as old home 
computers, embedded systems and 
electronics platforms like the Arduino. 
They allow for studying the operation 
of the device at a precision of individ-
ual bit shifts and clock cycles, and for 
utilising the specific features of the 
processor in ways that higher-level 
languages do not allow. Cross-assem-
blers running on a different system are 
typically used when writing software 
for these small devices, and emulators 
can also be leveraged for assistance. 
You can easily find ready-made guides 
for your platform of choice.

On larger computers, high-lev-
el compilers offer the easiest route to 
machine code; for example, using the 
-S option in GCC creates an assembly 
source code file that you can examine 
and edit. Compilers also support in-
line assembly i.e. embedding assembly 
sections into high-level language. Op-
timising the speed of your code is no 
longer a viable motivator for learning 
the machine code of modern languag-
es; instead, you can use it to write pro-
grams that are as short as possible.

Other, more direct tools are also 
available in addition to assembly com-
pilers. Machine code monitors and de-
buggers are intended for on-the-fly ed-
iting of memory and memory-resident 
programs. Hex editors can be used to 
examine and modify program files, and 
many of them can display an assembly 
representation of the file contents.

This article was a very concise look 
into the essence of machine code. You 
can use the information contained 
herein to examine assembly code, 
but you should have detailed docu-
ments concerning the instruction set 
and processors available before going 
deeper. The best way to learn the se-
crets of machine code is to select a suit-
able project and start writing code. 

# Define the symbol _start that points the
# linker to the beginning of execution.

.globl _start
_start:

# Initialize the loop counter.

        movq $1024,%rbp     mov r8,#1024

# Execute the system call write(1,msg,15),
# where 1 is the standard output and 15 the length.
# The write call is number 1 in 64-bit Linux
# and 4 in 32-bit.

loop0:  movq $1,%rax        mov r7,#4
        movq %rax,%rdi      mov r0,#1
        movq $msg,%rsi      adr r1,msg
        movq $15,%rdx       mov r2,#15
        syscall             swi 0

# Decrement the counter, jump if not zero.

        decq %rbp           subcc r8,r8,#1
        jnz loop0           bne loop0

# Execute the system call exit(0)

        movq $4,%rax        mov r7,#1
        xorq %rdi,%rdi      mov r0,#0
        syscall             swi 0

# The string to be written:

msg:    .string "Read Skrolli!! "

A Linux example that uses kernel calls for 64-bit x86 (on left) and 32-bit ARM (on right). You 
can compile the program on the target system by using gcc -nostdlib program.s -o program 
or separately by calling the as assembler and ld linker.


