
2016.1E54

E arlier, knowledge of ma-
chine code was an almost
required skill for game
and demo programmers,
for example, but nowa-

days it is mostly generated by high-lev-
el compilers. Being able to read ma-
chine code is still useful, nevertheless.
You can evaluate the work of the com-
piler and examine and modify pro-
grams without their source code. Pos-
sessing this skill makes the computer
and its software much more tangible.
Machine code is still an important tool
for people working with vintage hard-
ware, microcontrollers and low-level
security vulnerabilities.

Machines speak
many languages
Not all machines can understand the
same machine code. PC processors,

for example, use x86 machine code
and mobile devices use ARM machine
code. A single machine code is also
referred to as an instruction set or ar-
chitecture.

For the sake of clarity, this article
focuses on four instruction sets from
the annals of computing history: 6502,
x86, 68K and ARM. Since the design
philosophies behind these instruction
sets are also quite different, they will
also provide an overall picture of the
types of machine code that exist.

MOS Technology’s 6502 is one of
the most popular 8-bit processors. The
8-bit computers from Apple, Atari and
Commodore and the Nintendo NES,
for example, all use it or one of its
clones. The 6502’s traditional competi-
tor was the Zilog Z80, based on the In-
tel 8080. AVR and PIC are newer 8-bit
instruction sets that are mostly used in

Code

Machine code:
The gateway to the computer’s soul
Computer hobbyists have always considered machine code to be something extraordinary –
after all, it is the closest a programmer can get to the actual hardware. Although machine code
is no longer the gateway to programming magic, understanding it will help in comprehending
technology.
Story by Ville-Matias Heikkilä
Images by Mitol Meerna, Ville Matias Heikkilä, Visual6502.org, AMD

Instructions from different machine code dia-
lects, broken down to bits.

http://Visual6502.org

55

embedded systems.
The Intel x86 was made famous by

the IBM PC compatibles. The original
instruction set was 16-bit, but it has
later been radically expanded and re-
newed – first to 32-bit for the 386 pro-
cessor, then to 64-bit at the initiative of
AMD. Despite the enhancements, the
different historical sediments are still
clearly visible in x86 machine code.

The Motorola MC68000 was used
by most computers that competed
with the IBM PC until the early 1990s:
the Amiga, Atari ST and Macintosh as
well as most UNIX workstations. It is
based on the instruction sets of larger
1970s computers and is a pure CISC
(Complex Instruction Set Computer)
by design.

ARM is currently the most popular
instruction set. It dominates the mo-
bile platforms, in particular, but may
even replace the x86. The instruction
set was originally used on the Archi-
medes home computer, and it became
popular since it offered a lot of power
with a low amount of silicon. ARM is a
RISC (Reduced Instruction Set Com-
puter). Other RISCs include MIPS,
SPARC, PowerPC and AVR, for exam-
ple.

Following instructions
Machine code instructions are fairly
dense strings of ones and zeros. The
instruction presented on page 54 per-
forms the same task in several different
machine code variants. Each instruc-
tion adds the number 3 to one of the
processor’s internal registers, but the
bit width varies, among other things:
the 6502’s adc uses 8-bit numbers,

which means that the largest sum can
amount to a few hundred, while the
ARM can count into the billions with
its 32-bit wide calculations. The num-
ber of bits in a processor or instruction
set usually refers to the maximum bit
width of basic calculations.

Strings of ones and zeros are diffi-
cult to read for humans. This is why
people usually process machine code
in symbolic form, known as assembly
language. The assembly representation
can also be used to guess what the in-
struction does even if the instruction
set is not known; for example, ad(d)
refers to addition. The same machine
code may have several different as-
sembly language syntaxes that are used
by different assembly compilers or as-
semblers – such as the Intel and AT&T
syntaxes for the x86.

A machine code instruction usu-
ally consists of an opcode (operation
code), the addressing mode and the
operands. The opcode is the ”verb”
and it corresponds to the first word
in an assembly statement, also known
as a mnemonic; add, for example. The
operands are the ”nouns” that follow
it: registers, numbers and memory
addresses. Addressing modes can be

compared to the forms of declension in
human languages. They indicate how
the operand part should be interpret-
ed – whether it is a memory address
or a number – and provide additional
attributes; for example, the suffix .b,
.w or .l on a 68K instruction indicates
whether the operation is performed in
8, 16 or 32 bits.

Registers rotate data
In most machine code dialects, the ma-
jor part of the data processing occurs
inside registers. They can be viewed as
processor-internal fixed variables. The
number of registers, their width and
their manner of use differ substantially
from one instruction set to another.

The 6502 has a very small register
set and each register is tied to specific
tasks. Most calculations will need to be
performed in the accumulator regis-
ter, A. The index registers X and Y are
mostly suited for memory addressing
and loop counting, which A cannot
perform. In addition to these, the 6502
only has the stack pointer S, the status
register P and the instruction pointer
PC that indicates the memory address
for the next instruction. PC is the only
16-bit register; the others are 8-bit. The
limited register space is supplemented
by the ”zero page”, the first 256 bytes of
the memory, and many types of mem-
ory addressing can only be performed
via the zero page.

The ARM and other RISCs, for their
part, have a highly symmetrical and
general-purpose register set. Theo-
retically, any register can be used for
any purpose. The only exceptions are
register R15, which is the instruction

The oldest parts of the register set for the current 64-bit x86 originate from the 1970s.

2016.1E56

pointer, and a separate status register.
The basic ARM has 16 32-bit registers,
but most other RISCs have 32 or more
basic registers.

The registers on the x86 were origi-
nally specialised; for example, only the
registers BX, SI, DI and BP could be
used for memory addressing. The 32-
bit update removed some of these re-
strictions. Nevertheless, even the cur-
rent 64-bit operation mode has some
instructions that are bound to specific
registers: for example, the single-byte
command stosb saves the contents of
the 8-bit AL (accumulator low) regis-
ter to the memory location where the
original DI (destination index) regis-
ter’s 64-bit extension RDI is pointing
at.

The basic register set of the 68k is di-
vided into eight data and address reg-
isters D0–D7 and A0–A7, of which A7
is used as a stack pointer. It also has a
separate status register, CCR, and the
instruction pointer, PC. The address
registers were originally 24-bit, but

they were expanded to 32 bits in the
68020. All registers can be used for
calculations in a fairly general manner,
but memory addressing must use the
address registers.

Addressing modes modify
the instructions
The simplest machine code instruc-
tions have no operands; this means
that their operation is tied to specific
registers. The instruction stosb on the
x86 mentioned above is an example of
this implicit form of addressing. Other
examples include instructions for re-
turning from a subroutine (ret, rts)
and the instructions for setting and
clearing flags (sec, clc).

The typical number of operands in
an instruction varies from one ma-
chine code to another. On the 6502,
most instructions have one operand.
This operand is usually a memory ad-
dress, in which case the calculation oc-
curs between the accumulator register
and the memory location. The x86 and
68k have two operands: a source and

AND BIC

OR XOR
(EOR)

NOT

Bit operations from the instruction sets dis-
cussed in this article. BIC is used by ARM.

SHL, (SAL, ASL, LSL)

ROL

Operation of the bit shift instructions. Many
instruction sets have different names for ROR
and ROL that use the carry digit, such as RCR
and RCL.

Intel X86 68k AT&T X86

Operand order add destination,source add.w source,destination addw source,destination

Memory addressing add ax,[1234] add.w 1234,destination addw 1234,%ax

Immediate add ax,1234 add.w #1234,destination addw $1234,%ax

Indexed address [ebx+esi+8] 8(a0,d1.L) 8(%ebx,%esi)

Hexadecimal 1234h $1234 0x1234

Location of the instruction jmp $ jmp pc jmp .

Data byte db 123 ds.b 123 .byte 123

Assembly syntaxes are usually quite similar, but they may have some confusing differences.
Here are a few examples.

ROR

SHR (LSR)

SAR, ASR
8× 4× 2× 1× Unsigned Signed

0 0 0 0 0 +0

0 0 0 1 1 +1

0 0 1 0 2 +2

0 0 1 1 3 +3

0 1 0 0 4 +4

0 1 0 1 5 +5

0 1 1 0 6 +6

0 1 1 1 7 +7

1 0 0 0 8 -8

1 0 0 1 9 -7

1 0 1 0 10 -6

1 0 1 1 11 -5

1 1 0 0 12 -4

1 1 0 1 13 -3

1 1 1 0 14 -2

1 1 1 1 15 -1

Four-bit integers interpreted as unsigned and
signed, using two's complement.

clc
lda $FE
adc #$34
sta $FE
lda $FF
adc #$12
sta $FF

asl $FE
rol $FF
asl $FE
rol $FF
asl $FE
rol $FF

Handling 16-bit numbers with the 8-bit 6502.
The example on the left adds the hexadeci-
mal number $1234 to the value of the num-
ber saved at memory locations $FE and $FF,
the one on the right multiplies it by eight by
shifting the bits.

lp: cmp r0,r1
 subgt r0,r0,r1
 suble r1,r1,r0
 bne lp

A loop that calculates the largest common
denominator on an ARM by using conditional
execution. An Euclidean algorithm subtracts
the smaller number from the larger one until
the numbers are equal.

57

destination operand for each instruc-
tion. A typical ARM instruction has
three operands: two sources and one
destination. Forth-style stack-based
machine codes can be considered ze-
ro-operand variants.

For most processors, the main part
of machine consists of operations be-
tween registers. However, immediates
or different memory references can
also be used as operands in addition to
registers.

There are often limits to combin-
ing operands: on the x86, one of the
operands must always be a register
or an immediate; there is no direct
command for ”add value of memory
location 2 to value of memory loca-
tion 1”. However, memory references
can be very complex in accordance
with the CISC philosophy. For ex-
ample, the 32-bit x86 instruction mov
eax,[ebx+ecx*4+1256] forms a
memory address by adding together
a constant and two registers, of which
ECX has its bits shifted two steps to the
left.

In ARM-type RISCs, most instruc-
tions can only receive registers or
immediates as their operands. Mem-
ory handling must be arranged by
means of dedicated load and store

The internals of a 6502 processor. The lower half is dominated by an
8-band arithmetic and register unit, the top part has a microcode table
that converts the instructions into execution steps. Between them you
will find the rest of the operational logic, such as branch and flag
handling.

The internals of an AMD Phenom X4 processor. Most of the surface
area of the four symmetrically positioned 64-bit cores is taken up by
cache memory and instruction decoding and sequence logic.

The internals of a Motorola 68000. Can you find the arithmetic and register unit?

lp: movem (a0)+,(d1-d7)
 movem (d1-d7),-(a1)
 dbne d0,lp

lp: subcc r2,r2,#1
 ldmia r0,(r3-r13)
 stmdb r1,(r3-r13)
 bne lp

A loop that copies the contents of a memory area in reverse order to another memory area by
using the register set instructions. 68k on the left, ARM on the right.

2016.1E58

instructions (ld, st, mov) that do
not perform calculations.

Memory handling on the ARM and
68k is improved by addressing types
where the contents of the register are
incremented or decremented while
the register is used for memory ad-
dressing. This is handy when scanning
memory areas.

Instead of using direct addresses, it
is often preferable to refer to memory
locations by using the location of the
instruction as a fixed point. The con-
ditional jump instructions on the 6502
and x86 can be used to jump forward
or backward by a maximum of 128
bytes; this means that the instruction
only takes up two bytes. Program code
that does not use direct memory ad-
dresses is called position-independent,
since it can be executed as is from any
location in memory.

Computers like to compute
Most processors use binary integers
by default. The 6502, 68k and x86 also
offer Binary Coded Decimals (BCD)
where four bits correspond to each of
the decimals 0–9. Floating point num-
bers, for their part, are processed with
separate floating point units that have
their own registers and instructions.

Negative integers are nearly always
expressed as two’s complements, where
the sign is changed by flipping the bits
around and adding one to the result.
Therefore, a number that contains only
ones has a value of -1, like a tape coun-
ter that goes from 000 to 999 when re-
wound. The same bit string can be in-
terpreted as either signed or unsigned,
and the differences become especially
apparent during multiplication, divi-
sion and comparison.

All machine codes offer addition
and subtraction for integers (add,
sub). The 8-bit machines usually lack
multiplication and division (mul, div),
which means that they must be im-
plemented by means of subroutines
or tables. RISCs usually only contain
multiplication.

Bit operations include both logical
bit operations (and, or, eor/xor) and
bit shifts that come in many forms. The
functionality of the bit operations is
presented in the enclosed diagrams.
The difference between an ”arithme-
tic” and ”logical” bit shifts is that in
an arithmetic shift, the number is as-

sumed to be signed and its top bit is
kept in place.

One of the peculiarities of ARM is
that, while it has no instructions for
bit shifts, a bit shift can be combined
with the second source operand of any
arithmetic operation. For example,
add r0,r1,r2 asr r3 corresponds
to the C expression r0=r1+(r2>>r3).

Sometimes, the result of the opera-
tion will not fit in the destination reg-
ister. For example, the sum of two 8-bit
numbers has 9 bits. The topmost bit is
usually recorded in the carry flag (C).
The carry digit is used for chaining the
calculations: the instructions adc/addx
and sbc/sbb/subx are additions and
substractions that consider the carry
digit from the previous calculation.

What ifs
A conditional jump is the typical ma-
chine code equivalent to the if clause
in higher-level languages. For example,
the instruction beq, je or jz will jump
to the memory address provided as the
operand if the result of the previous
arithmetic operation was zero. Before
the jump, it is common to use a com-

parison instruction, cmp/cp, which
performs the subtraction without sav-
ing the result. The jump instructions
are usually named from the point of
view of comparison; if the result of the
subtraction is zero, the numbers are
equal (e/eq).

The information concerning the re-
sult is usually saved in status register
bits that are known as flags. The carry
flag mentioned above is one of them.
Conditional jump instructions exam-
ine the status of the flags and jump if a
condition is met. Typical flags include:
•  The zero flag (Z) that indicates

whether the result of a calculation
is zero.

•  The sign flag (S) or negative flag
(N) that corresponds to the top bit
of a result that fits in a register. For
negative numbers, this is 1.

•  The carry flag (C) that corresponds
to the bit carried over from an arith-
metic operation.

•  The overflow flag (O or V) is set
when the extension of the result
does not fit in the carry flag.

On the 6502, x86 and 68k, each cal-
culation instruction affects the flags.

EX, EXG, XCHG exchange Exchange the contents of the registers.

LD load Load from memory.

MOV, MOVE move Copy data from register or memory to register or memory.

POP, PL pop, pull Pick the topmost value in the stack.

PUSH, PH push Add to the top of the stack.

ST store Store in memory

ADC, ADDX add with carry/extend Add with carry digit.

ADD add Add.

DEC decrement Decrement by one.

DIV divide Divide.

INC increment Increment by one.

MUL multiply Multiply.

NEG negate Switch the sign.

SBB, SBC, SUBX subtract with borrow/carry/extend Subtract with carry digit.

SUB subtract Subtract.

AND and AND operation by bit.

ASL, SAL arithmetic shift left Shift bits to the left.

ASR, LSR, SHR [arithmetic/logical] shift right Shift bits to the right, extending the topmost bit.

EOR, XOR exclusive or Exclusive OR by bit.

LSL, SHL [logical] shift left Shift bits to the right, extending with zero.

NOT not Reverse the bits.

OR or OR operation by bit.

ROL, RL, RCL rotate [with carry] left Rotate bits counterclockwise [through the C flag].

ROR, RR, RCR rotate [with carry] right Rotate bits clockwise [through the C flag].

Data transfer.

Basic arithmetic operations.

Bit operations.

59

On the ARM, the effect on flags is ex-
pressed for each instruction with the
suffix cc (condition code). ARM does
not always require conditional jumps,
since the execution of any instruction
can be made conditional. For example,
the instruction addeq operates like
add, but it is only executed if the zero
flag is set.

Stacking up other stuff
A normal unconditional jump instruc-
tion may be called jmp, bra or b, while
a subroutine jump is called jsr, bsr,
call or bl. Subroutine calls store the
value of the instruction pointer. This
allows the execution to resume from
the place where the subroutine was
called. The return instruction is typi-
cally called ret or rts.

Older instruction sets typically save
the return address in a memory area
known as the stack. Instead, RISCs use
a register that the subroutine stacks by
itself if it aims to call other subroutines.

The linking jump instruction for ARM
is called bl (branch and link). The link
register is usually R14 and the instruc-
tion pointer is R15, so the instruction
for returning from the subroutine is
mov r15,r14.

The stack stores other things in ad-
dition to return addresses. Since the
subroutines use the same registers as
the main program, the values of the
register values will commonly need to
be stored in the stack. Stack space can
also be reserved for local variables that
do not fit inside the registers. The x86
and 6502 have push and pop/pull in-
structions that are bound to the stack
pointer, whereas the ARM and 68k use
regular memory handling instructions
for stack handling. The ARM and 68k
also have instructions for saving or
loading a desired register set at once.

Calling conventions are used to keep
larger programs in check. They define
how parameters and return values are
relayed between the main program

and subroutine, and which registers
the subroutine is allowed to modify.

The world is memory
From the processor’s point of view, the
entire outside world consists of mem-
ory. Memory is usually divided into
memory cells that are the size of an
8-bit byte and have their own numeric
address.

There are two main methods for
storing numbers that consist of sev-
eral bytes. The 68k uses big-endian
byte order, which means that the most
significant bits are stored in the first
byte. The 6502 and x86 use little-endi-
an byte order and store the lower bits
first. ARM can operate with either byte
order; little-endian is more common,
however.

In simpler devices, the physical
RAM, ROM and control chips have
fixed areas within the memory space.
In a VIC-20 program, for example,
writing to address $900F will always
affect the colour register of the video
chip. More complex hardware allows
for changing the memory structure
visible to the program.

If the machine has more memory
than the address space can hold, such
as over 64 kilobytes in a 6502 based
machine, banking is required. Banking
means selecting which parts of the to-
tal memory are visible in specific areas
of the memory space. Modern operat-
ing systems modify the visible struc-
ture of the memory in order to prevent
different processes from accessing
unauthorised memory areas. At the
same time, the code is prevented from
modifying the state of the processor by
switching from supervisor mode to user
mode during its execution.

Virtual memory means all memory
visible to the program needs to cor-
respond to physical memory. If the
address space is large enough, the pro-
gram may request the operating system
to extend the virtual memory to the
entire contents of the hard drive, for
example. When the program tries to
access a memory location that is not in
physical memory, this causes an excep-
tion that the operating system handles
by loading the desired location from
the hard drive into physical memory.
From the point of view of the program,
the entire contents of the drive are per-
manently accessible in memory.

BIT, BT, BTST, TEST bit test Test individual bits (AND without saving the result).

CLf clear flag Clear a flag (e.g. C).

CMP, CP compare Compare (subtract without saving the result).

Scc, SETcc set on condition Set the value of the register to the truth value (e.g. NE).

SEf, STf set flag Set a flag (e.g. C).

Bcc, Jcc branch/jump on condition Jump if the condition (e.g. NE) is met.

BL, BAL branch and link Branch to subroutine, place return address in the link register.

DBcc, LOOP decrement and branch, loop Decrement the value of the register and branch if the condi-
tion is met.

JMP, JP, B, BRA jump/branch Branch to memory address.

JSR, JR, BSR jump/branch to subroutine Branch to subroutine, place return address in the stack.

RET, RTS return from subroutine Return from the subroutine to the main routine.

SWI, INT, TRAP,
BRK, SYSCALL

software interrupt, trap,
break, system call

Perform a software interrupt.

HLT halt Halt the processor (wait for interrupt).

NOP no operation Do nothing.

CC, NC no/clear carry Carry digit = 0

CS, C carry set Carry digit = 1

EQ, E, Z equal/zero Numbers equal (zero flag set)

GT, G greater [than] First value > second value

LT, L less [than] First value < second value

NE, NZ not equal/zero Numbers not equal (zero flag cleared)

NS, PL no sign, plus Result not negative (sign = 0)

S, MI sign, minus Result negative (sign = 1)

VC, NO no/clear overlow Overflow flag cleared.

VS, O overflow set Overflow flag set.

Comparison and flags.

Jump instructions.

Other instructions.

Conditions (as part of instructions).

2016.1E60

Memory speed is not a bottleneck for
1970s processors. On the 6502, for ex-
ample, memory-resident tables and un-
rolled loops should be used in code that
is critical in terms of speed, if you can
fit them in memory. For modern pro-
cessors, however, a calculation needs
to be really complex in order to bene-
fit from a pre-calculated table. Internal
caches and smart pipelines mean that
unrolling loops is more likely to slow
down the code than make it faster.

Controlling devices
Computer equipment includes auxil-
iary chips that have their own control
registers. On the 6502, 68k and ARM,
these registers are visible in the mem-
ory space. However, the x86 uses sepa-
rate I/O ports that are handled with the
in and out instructions.

Interruptions were designed to re-
lieve the processor from the burden
of continuously polling the states of
the different devices. A device can
send out an interrupt request (IRQ)
that causes the processor to stop what
it is doing and move to the interrupt
handling routine. In order to manage
routine tasks, most operating systems
execute a timer interrupt a few dozen
times per second.

In its simplest form, an interrupt
is no different than a subroutine call.
The start address for the subroutine is
fetched from a branch table according
to the interrupt type and number. In

modern operating systems, the inter-
rupt also switches the processor into
supervisor mode. Only an operating
system that is running in supervisor
mode can access external hardware,
and applications perform a non-mask-
able interrupt (NMI) when they require
assistance from the operating system.

Several instructions at once
The commonly used instruction sets
go back several decades, but processor
operation has changed significantly
during this time. Parallelism has been
increased, in particular.

Traditional CISC processors run
only one instruction at a time. The
execution of an instruction is divided
into several consecutive stages that are
coded in the processor’s internal mi-
crocode table. On the 6502, executing
an instruction consists of 2–8 stages,
whereas division on the 8086 takes up
over 100 clock cycles. On these proces-
sors, a programmer can calculate the
execution time for their code simply
by adding together the clock cycles re-
quired for the instructions and divid-
ing the result by the clock frequency.

One of the key ideas of RISC archi-
tectures is that the execution of simple
instructions may occur in parallel. The
original ARM processor on the Archi-
medes has a three-stage pipeline: the
processor saves the result from one
arithmetic operation into a register
while performing the next operation

and reading the following instruction
from memory.

Pipeline technology means that
jumps are relatively costly. Executing a
jump means discarding the execution
stages of the instructions that follow
it. There are several ways to prevent
this issue. Conditional execution, used
by ARM, is one of them: omitting one
or two instructions is less costly than
purging the entire pipeline. Branch pre-
diction is a more advanced technique;
the processor tries to guess whether the
jump will occur and loads instructions
into the pipeline accordingly. Specula-
tive execution, on the other hand, ex-
ecutes both options and discards the
effects of the one that did not occur.

Many processors have several paral-
lel pipelines, allowing them to execute
consecutive instructions in real time.
However, consecutive instructions
commonly depend on each other’s
results; this means that the program-
mer or processor should arrange the
instructions in a manner where con-
secutive instructions do not use the
same registers. In processor automa-
tion, these techniques are referred to
as out-of-order execution and register
renaming.

The x86 architecture has offered its
fair share of challenges for processor
designers. Since the 1990s, complex
x86 instructions have been broken
down into RISC style microinstruc-
tions that utilise the above techniques.

A 6502 example for the Commodore 64. The PRG file generated by the
ACME cross-assembler can be started directly in the VICE emulator,
for example.

A 16-bit x86 example for MS-DOS. NASM will compile the code and
create an executable COM file.

 !to "skrolli.prg",cbm
 *=$0801 ; Start address of the program.

; Obligatory BASIC portion: 10 SYS2061 + final zeroes:
!byte $0b,$08,$0a,$00,$9e,$32,$30,$36,$31,0,0,0

 ldx #0 ; Set counter (X) to zero.

loop0 txa ; Copy X to A in order to
 and #15 ; calculate X AND 15.
 tay ; Result to Y; then fetch
 lda msg,y ; a byte from address msg+Y.

 sta $0400,x ; Copy it to the each
 sta $0500,x ; 256-byte block of the
 sta $0600,x ; screen memory at the
 sta $0700,x ; offset X.

 inx ; Increment X.
 bne loop0 ; Repeat until rolls back to zero.

 rts ; Return to BASIC interpreter.

msg !scr "read skrolli!!! "

 bits 16 ; Nasm to 16-bit mode.
 org 0x100 ; COM programs start at 0x100.

 mov ax,0xb800 ; Start address of screen memory
 mov es,ax ; .. to the segment register ES.
 xor di,di ; Set Destination Index to zero.

 mov ah,14 ; High byte of AX is the color.

loop1 mov si,msg ; Source Index to start of text.
 mov cx,16 ; Set loop counter to 16.

loop0 lodsb ; AL <- [DS*16+SI], SI incs.
 stosw ; AH*256+AL -> [ES*16+DI], DI +2.
 loop loop0 ; CX decs, repeat until 0.

 cmp di,80*25*2 ; Gone through the whole screen?
 jne loop1 ; If not, continue the loop.

 ret ; Return to the command shell.

msg db "Read Skrolli!!! "

61

Special instructions for
special assignments
Although the basic instruction sets can
more or less do everything, they often
have special extensions that speed up
the performance of specific tasks.

Floating point arithmetic has been a
traditional requirement for scientific
calculation. The idea is that numbers
are presented using the mantissa and
exponent, which offers a substantially
larger value range than integers. PC
processors started receiving integrat-
ed floating point units in the age of
the 80486, but not all game consoles
and mobile devices had floating point
hardware even in the 2000s.

Digital signal processors (DSPs)
were used to speed up the processing
of image and sound data. Even basic
processors started receiving DSP-type
SIMD (single instruction, multiple
data) instructions in the 1990s. Exam-
ples of SIMD extensions include MMX

and SSE for the x86 and NEON for the
ARM.

True to their name, SIMD instruc-
tions use several different data elements
in parallel. For example, the MMX in-
struction paddb mm0,mm1 interprets
the values of the 64-bit multimedia
registers MM0 and MM1 as rows of
separate 8-bit bytes when adding them
together. There are also instructions for
rearranging data elements, for example.

The registers in the SSE and NEON
are 128-bit, and the elements can also
be floating point numbers. SSE also
supports complex floating point oper-
ations such as square roots, and it has
replaced the old x87 instructions on
modern x86s.

In the mobile world, in particular,
the same chip may contain an enor-
mous amount of specialised arithme-
tic logic. For example, the Qualcomm
Snapdragon 810 contains eight 64-bit
ARM processor cores, each of which

has three discrete pipelines and the
NEON and floating point extensions.
The chip also has a 288-core graphics
processing unit, a 32-bit DSP and con-
trol chips that are specific to different
radio protocols. Your pocket may be
performing more simultaneous calcu-
lations than an old-age supercomputer.

Hack away!
The most natural, and often the most
rewarding, machine code projects can
be found in the field of simple infor-
mation technology, such as old home
computers, embedded systems and
electronics platforms like the Arduino.
They allow for studying the operation
of the device at a precision of individ-
ual bit shifts and clock cycles, and for
utilising the specific features of the
processor in ways that higher-level
languages do not allow. Cross-assem-
blers running on a different system are
typically used when writing software
for these small devices, and emulators
can also be leveraged for assistance.
You can easily find ready-made guides
for your platform of choice.

On larger computers, high-lev-
el compilers offer the easiest route to
machine code; for example, using the
-S option in GCC creates an assembly
source code file that you can examine
and edit. Compilers also support in-
line assembly i.e. embedding assembly
sections into high-level language. Op-
timising the speed of your code is no
longer a viable motivator for learning
the machine code of modern languag-
es; instead, you can use it to write pro-
grams that are as short as possible.

Other, more direct tools are also
available in addition to assembly com-
pilers. Machine code monitors and de-
buggers are intended for on-the-fly ed-
iting of memory and memory-resident
programs. Hex editors can be used to
examine and modify program files, and
many of them can display an assembly
representation of the file contents.

This article was a very concise look
into the essence of machine code. You
can use the information contained
herein to examine assembly code,
but you should have detailed docu-
ments concerning the instruction set
and processors available before going
deeper. The best way to learn the se-
crets of machine code is to select a suit-
able project and start writing code. 

Define the symbol _start that points the
linker to the beginning of execution.

.globl _start
_start:

Initialize the loop counter.

 movq $1024,%rbp mov r8,#1024

Execute the system call write(1,msg,15),
where 1 is the standard output and 15 the length.
The write call is number 1 in 64-bit Linux
and 4 in 32-bit.

loop0: movq $1,%rax mov r7,#4
 movq %rax,%rdi mov r0,#1
 movq $msg,%rsi adr r1,msg
 movq $15,%rdx mov r2,#15
 syscall swi 0

Decrement the counter, jump if not zero.

 decq %rbp subcc r8,r8,#1
 jnz loop0 bne loop0

Execute the system call exit(0)

 movq $4,%rax mov r7,#1
 xorq %rdi,%rdi mov r0,#0
 syscall swi 0

The string to be written:

msg: .string "Read Skrolli!! "

A Linux example that uses kernel calls for 64-bit x86 (on left) and 32-bit ARM (on right). You
can compile the program on the target system by using gcc -nostdlib program.s -o program
or separately by calling the as assembler and ld linker.

